Sign in →

Test ID TBNY T, B and NK Lymphocyte Quantitation, New York

Reporting Name

T, B and NK Lymphocyte QN, New York

Useful For

Only orderable by New York clients

 

Serial monitoring of CD4 T-cell count in HIV-positive patients

 

Follow-up and diagnostic evaluation of primary immunodeficiencies, including severe combined immunodeficiency

 

Immune monitoring following immunosuppressive therapy for transplantation, autoimmunity, and other immunological conditions where such treatment is utilized

 

Assessment of immune reconstitution posthematopoietic cell transplantation

 

Early screening of gross quantitative anomalies in lymphocyte subsets in infection or malignancies

 

Absolute quantitation of circulating B cells for diagnosis of chronic lymphocytic leukemia patients as indicated in the 2008 International Workshop on Chronic Lymphocytic Leukemia guidelines

Specimen Type

Whole Blood EDTA


Advisory Information


This assay should not be used for diagnosing lymphocytic malignancies or evaluation of lymphocytosis of unknown etiology, though the latter may be identified through this assay in a screening assessment. In such cases, LCMS / Leukemia/Lymphoma Immunophenotyping by Flow Cytometry will be recommended, which includes a hematopathology review. However, this assay can be used for absolute quantitation of B cells in chronic lymphocytic leukemia patients as indicated above.



Shipping Instructions


It is recommended that specimens arrive within 24 hours of draw. Draw and package specimen as close to shipping time as possible.



Necessary Information


Date of draw is required.



Specimen Required


Container/Tube: 4 mL Lavender top (EDTA)

Specimen Volume: 3 mL

Collection Instructions: Send specimen in original tube. Do not aliquot.


Specimen Minimum Volume

1 mL

Specimen Stability Information

Specimen Type Temperature Time
Whole Blood EDTA Ambient 52 hours

Reference Values

The appropriate age-related reference values will be provided on the report.

Day(s) and Time(s) Performed

Monday through Sunday

Test Classification

This test was developed using an analyte specific reagent. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.

CPT Code Information

86355

86357

86359

86360

LOINC Code Information

Test ID Test Order Name Order LOINC Value
TBNY T, B and NK Lymphocyte QN, New York 80721-4

 

Result ID Test Result Name Result LOINC Value
3321 CD45 Total Lymph Count 27071-0
3316 % CD3 (T Cells) 8124-0
3322 CD3 (T Cells) 8122-4
3319 % CD4 (T Cells) 8123-2
3325 CD4 (T Cells) 24467-3
3320 % CD8 (T Cells) 8101-8
3326 CD8 (T Cells) 14135-8
3318 % CD19 (B Cells) 8117-4
3324 CD19 (B Cells) 8116-6
4054 % CD16+CD56 (NK cells) 8112-5
4055 CD16+CD56 (NK cells) 20402-4
3327 4/8 Ratio 54218-3
6657 Comment 48767-8

Clinical Information

Lymphocytes in peripheral blood (circulation) are heterogeneous and can be broadly classified into T cells, B cells, and natural killer (NK) cells. There are various subsets of each of these individual populations with specific cell-surface markers and function. This assay provides absolute (cells/mcL) and relative (%) quantitation for the main categories of T cells, B cells, and NK cells, in addition to a total lymphocyte count (CD45+).

 

Each of these lymphocyte subpopulations have distinct effector and regulatory functions and are maintained in homeostasis under normal physiological conditions. Each of these lymphocyte subsets can be identified by a combination of 1 or more cell surface markers. The CD3 antigen is a pan-T cell marker, and T cells can be further divided into 2 broad categories, based on the expression of CD4 or CD8 coreceptors. B cells can be identified by expression of CD19, while NK cells are typically identified by the coexpression of CD16 and CD56.

 

The absolute counts of lymphocyte subsets are known to be influenced by a variety of biological factors, including hormones, the environment, and temperature. The studies on diurnal (circadian) variation in lymphocyte counts have demonstrated progressive increase in CD4 T-cell count throughout the day, while CD8 T cells and CD19+ B cells increase between 8:30 a.m. and noon with no change between noon and afternoon. NK-cell counts, on the other hand, are constant throughout the day.(1) Circadian variations in circulating T-cell counts have been shown to be negatively correlated with plasma cortisol concentration.(2-4) In fact, cortisol and catecholamine concentrations control distribution and, therefore, numbers of naive versus effector CD4 and CD8 T cells.(2) It is generally accepted that lower CD4 T-cell counts are seen in the morning compared to the evening(5) and during summer compared to winter.(6) These data therefore indicate that timing and consistency in timing of blood collection is critical when serially monitoring patients for lymphocyte subsets.

 

Abnormalities in the number and percent of T (CD3+, CD4+, CD8+), B (CD19), and NK (CD16+CD56) lymphocytes have been described in a number of different disease conditions. In patients who are infected with HIV, the CD4 count is measured for AIDS diagnosis and for initiation of antiviral therapy. The progressive loss of CD4 T-lymphocytes inpatients infected with HIV is associated with increased infections and complications. The Public Health Service has recommended that all HIV-positive patients be tested every 3 to 6 months for the level of CD4 T-lymphocytes.

 

Lymphocyte subset quantitation is also very useful in the evaluation of patients with primary immunodeficiencies of all ages, including follow-up for newborn screening for severe combined immunodeficiency and immune monitoring following immunosuppressive therapy for transplantation, autoimmunity or any other relevant clinical condition where immunomodulatory treatment is used.

 

It is also helpful as a preliminary screening assay for gross quantitative anomalies in any lymphocyte subset, whether related to malignancies or infection.

 

The 2008 guidelines for diagnosis and treatment of chronic lymphocytic leukemia (CLL) from the International Workshop on Chronic Lymphocytic Leukemia(7) recommend changing the diagnostic criteria for CLL from an absolute lymphocyte count greater than 5 x 10(9)/L to a circulating B-cell count greater than 5 x 10(9)/L(8,9) previously defined in the 1996 National Cancer Institute guidelines for CLL. This flow cytometric assay enables accurate quantitation of circulating B cells using a single platform technology with absolute quantitation through the use of flow cytometry beads.

Interpretation

HIV treatment guidelines from the US Department of Health and Human Services and the International Antiviral Society-USA Panel recommend antiviral treatment in all patients with HIV infection, regardless of CD4 T-cell count.(10,11) Additionally, antibiotic prophylaxis for Pneumocystis jiroveci infection and other opportunistic infections is recommended for patients with CD4 count less than 200 cells/mcL.

Clinical Reference

1. Carmichael KF, Abayomi A: Analysis of diurnal variation of lymphocyte subsets in healthy subjects and its implication in HIV monitoring and treatment. 15th Intl Conference on AIDS, Bangkok, Thailand, 2004, Abstract # B11052

2. Dimitrov S, Benedict C, Heutling D, et al: Cortisol and epinephrine control opposing circadian rhythms in T-cell subsets. Blood 2009;113:5134-5143

3. Dimitrov S, Lange T, Nohroudi K, Born J: Number and function of circulating antigen presenting cells regulated by sleep. Sleep 2007;30:401-411

4. Kronfol Z, Nair M, Zhang Q, et al: Circadian immune measures in healthy volunteers: relationship to hypothalamic-pituitary-adrenal axis hormones and sympathetic neurotransmitters. Psychosom Med 1997;59:42-50

5. Malone JL, Simms TE, Gray GC, et al: Sources of variability in repeated T-helper lymphocyte counts from HIV 1-infected patients: total lymphocyte count fluctuations and diurnal cycle are important. J AIDS 1990;3:144-151

6. Paglieroni TG, Holland PV: Circannual variation in lymphocyte subsets, revisited. Transfusion 1994;34:512-516

7. Hallek M, Cheson BD, Catovsky D, et al: Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on CLL updating the National Cancer Institute Working Group 1996 guidelines. Blood 2008;111:5446-5456

8. Hanson CA, Kurtin PJ, Dogan A: The proposed diagnostic criteria change for chronic lymphocytic leukemia: unintended consequences? Blood 2009;113:6495-6496

9. Hillmen P, Cheson BD, Catovsky D, et al: Letter to Editor. Blood 2009;113:6497-6498

10. US Department of Health and Human Services. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Available at http://aidsinfo.nih.gov/guidelines

11. Thompson MA, Aberg JA, Hoy JF, et al: Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA Panel. JAMA 2012;308:387-402

Analytic Time

3 days

Method Name

Fluorescent Flow Cytometry