Test ID SSH24 Supersaturation Profile, Self-Collect, 24 Hour, Urine
Ordering Guidance
Necessary Information
1. 24-Hour volume in milliliters is required.
2. Patient's height in centimeters and weight in kilograms are required if patient is younger than 18 years.
3. Patient's street address, city, state, ZIP (postal) code, country, and home phone are required (post-office [PO] boxes are not acceptable delivery locations)
Specimen Required
Patient Preparation:
X-ray dyes and contrast media will affect uric acid test results.
-If a kidney X-ray with dye or computerized tomography (CT) scan with contrast has been performed, the patient should wait at least 24 hours before starting collection.
-If a cholangiography (bile duct X-ray) has been performed, the patient should wait 7 days before starting collection.
-If patient has taken tablets for a gallbladder X-ray, the patient should wait 7 days before starting collection.
Supplies: SSH24 Home Collection Kit (T921)
Collection Container/Tube: 24-hour graduated urine container with no metal cap or glued insert
Submission Container/Tube: Plastic, 60-mL urine bottle
Specimen Volume: 35 mL
Collection Instructions:
1. Order test each time the patient is to collect a 24-hour urine specimen at home and mail the specimen directly to Mayo Clinic Laboratories.
2. Order should be placed a minimum of 3 days prior to desired date of collection.
3. Enter patient's address information for each order created, including street address (post office [PO] boxes are not acceptable delivery locations), city, state abbreviation, zip code, country, and home phone number.
4. For each order, the SSH24 Home Collection kit will be mailed directly to the patient for self-collection (delivery to a PO box will not occur). This kit contains instructions for how to properly collect and transport the specimen after collection.
Useful For
Diagnosis and management of patients with renal lithiasis:
-Predicting the likely composition of the stone, in patients who have a radiopaque stone, for whom stone analysis is not available
-May aid in designing a treatment program
Aiding in identification of specific risk factors for stones using a 24-hour urine collection
Monitoring the effectiveness of therapy by confirming that the crystallization potential has indeed decreased
Evaluating kidney excretion of acid and urine pH
Estimating a patient's protein intake
Highlights
Urine specimens for this test are collected by the patient and sent directly to Mayo Clinic Laboratories via supplied collection kit. For more information, see Specimen Required.
Profile Information
Test ID | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
SSIN1 | Supersaturation, 24 HR,Home Kit,U 1 | No | Yes |
NAUT | Sodium, 24 HR, U | Yes, (order NAU) | Yes |
KUT | Potassium, 24 HR, U | Yes, (order KUR) | Yes |
CALUT | Calcium, 24 HR, U | Yes, (order CALU) | Yes |
MAGT | Magnesium, 24 HR, U | Yes, (order MAGU) | Yes |
CLUT | Chloride, 24 HR, U | Yes, (order CLU) | Yes |
POUT | Phosphorus, 24 HR, U | Yes, (order POU) | Yes |
SULFT | Sulfate, 24 HR, U | Yes, (order SULFU) | Yes |
CITT | Citrate Excretion, 24 HR, U | Yes, (order CITR) | Yes |
OXUT | Oxalate, 24 HR, U | Yes, (order OXU) | Yes |
UPHT | pH, 24 HR, U | Yes, (order PHU_) | Yes |
URICT | Uric Acid, 24 HR, U | Yes, (order URCU) | Yes |
CTUT | Creatinine, 24 HR, U | Yes, (order CTU) | Yes |
OSMUT | Osmolality, 24 HR, U | Yes, (order UOSMU) | Yes |
AMMT | Ammonium, 24 HR, U | Yes, (order AMMO) | Yes |
UNT | Urea Nitrogen, 24 HR, U | No | Yes |
PCRUT | Protein Catabolic Rate, 24 HR, U | No | Yes |
DEMO9 | Patient Demographics | No | Yes |
Method Name
AMMT, CITT, OXUT: Enzymatic
OSMUT: Freezing Point Depression
SULFT: High-Performance Ion Chromatography (HPIC)
CALUT, POUT: Photometric
MAGT: Colorimetric Endpoint Assay
UPHT: pH Meter
NAUT, KUT, CLUT: Potentiometric, Indirect Ion-Selective Electrode (ISE)
CTUT: Enzymatic Colorimetric Assay
URICT: Uricase
UNT: Kinetic UV Assay
Reporting Name
Supersaturation, 24 HR, Home Kit, USpecimen Type
UrineSpecimen Minimum Volume
25 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Urine | Refrigerated (preferred) | 14 days | |
Frozen | 14 days | ||
Ambient | 72 hours |
Reject Due To
pH <4.5 or pH >8.0 | Reject |
Clinical Information
Urine is often supersaturated, which favors precipitation of several crystalline phases, such as calcium oxalate, calcium phosphate, and uric acid. However, crystals do not always form in supersaturated urine because supersaturation is balanced by crystallization inhibitors that are present in the urine. Urinary inhibitors include ions (eg, citrate) and macromolecules but remain poorly understood.
Urine supersaturation is calculated by measuring the concentration of all the ions that can interact (potassium, calcium, phosphorus, oxalate, uric acid, citrate, magnesium, sodium, chloride, sulfate, and pH). Once the concentrations of all the relevant urinary ions are known, a computer program can calculate the theoretical supersaturation with respect to the important crystalline phases (eg, calcium oxalate).(1)
Since the supersaturation of urine has been shown to correlate with stone type,(2) therapy is often targeted towards decreasing the urinary supersaturations identified. Treatment strategies include alterations in diet and fluid intake as well as drug therapy; all designed to decrease the urine supersaturation.
Reference Values
SUPERSATURATION REFERENCE MEANS (Delta G: DG)
Men:
Calcium oxalate: 1.89 DG
Brushite: 0.46 DG
Hydroxyapatite: 4.19 DG
Uric acid: 1.18 DG
Women:
Calcium oxalate: 1.59 DG
Brushite: -0.11 DG
Hydroxyapatite: 3.62 DG
Uric acid: 0.89 DG
OSMOLALITY, 24 HOUR, URINE
0-11 months: 50-750 mOsm/kg
≥12 months: 150-1,150 mOsm/kg
pH, 24 HR, U
4.5-8.0
SODIUM, 24 HOUR, URINE
≥18 years: 22-328 mmol/24 h
Reference values have not been established for patients who are younger than 18 years.
POTASSIUM. 24 HOUR, URINE
≥18 years: 16-105 mmol/24 h
Reference values have not been established for patients who are younger than 18 years.
CALCIUM, 24 HOUR, URINE
Males: <250 mg/24 h
Females: <200 mg/24 h
Reference values have not been established for patients who are younger than 18 years.
MAGNESIUM, 24 HOUR URINE
≥18 years: 51-269 mg/24 h
Reference values have not been established for patients who are younger than 18 years.
CHLORIDE, 24 HOUR URINE
≥18 years: 34-286 mmol/24 h
Reference values have not been established for patients who are younger than 18 years.
PHOSPHORUS, 24 HOUR, URINE
≥18 years: 226-1,797 mg/24 h
Reference values have not been established for patients who are younger than 18 years of.
SULFATE, 24 HOUR, URINE
7-47 mmol/24 h
CITRATE EXCRETION, 24 HOUR, URINE
0-19 years: Not established
20 years: 150-1,191 mg/24 h
21 years: 157-1,191 mg/24 h
22 years: 164-1,191 mg/24 h
23 years: 171-1,191 mg/24 h
24 years: 178-1,191 mg/24 h
25 years: 186-1,191 mg/24 h
26 years: 193-1,191 mg/24 h
27 years: 200-1,191 mg/24 h
28 years: 207-1,191 mg/24 h
29 years: 214-1,191 mg/24 h
30 years: 221-1,191 mg/24 h
31 years: 228-1,191 mg/24 h
32 years: 235-1,191 mg/24 h
33 years: 242-1,191 mg/24 h
34 years: 250-1,191 mg/24 h
35 years: 257-1,191 mg/24 h
36 years: 264-1,191 mg/24 h
37 years: 271-1,191 mg/24 h
38 years: 278-1,191 mg/24 h
39 years: 285-1,191 mg/24 h
40 years: 292-1,191 mg/24 h
41 years: 299-1,191 mg/24 h
42 years: 306-1,191 mg/24 h
43 years: 314-1,191 mg/24 h
44 years: 321-1,191 mg/24 h
45 years: 328-1,191 mg/24 h
46 years: 335-1,191 mg/24 h
47 years: 342-1,191 mg/24 h
48 years: 349-1,191 mg/24 h
49 years: 356-1,191 mg/24 h
50 years: 363-1,191 mg/24 h
51 years: 370-1,191 mg/24 h
52 years: 378-1,191 mg/24 h
53 years: 385-1,191 mg/24 h
54 years: 392-1,191 mg/24 h
55 years: 399-1,191 mg/24 h
56 years: 406-1,191 mg/24 h
57 years: 413-1,191 mg/24 h
58 years: 420-1,191 mg/24 h
59 years: 427-1,191 mg/24 h
60 years: 434-1,191 mg/24 h
>60 years: Not established
OXALATE, 24 HOUR, URINE
0.11-0.46 mmol/24 h
9.7-40.5 mg/24 h
URIC ACID, 24 HOUR, URINE
Male: ≥18 years: 200-1,000 mg/24 h
Female: ≥18 years: 250-750 mg/24 h
Reference values have not been established for patients who are younger than 18 years.
CREATININE, 24 HOUR, URINE
Male: ≥18 years: 930-2,955 mg/24 h
Female: ≥18 years: 603-1,783 mg/24 h
Reference values have not been established for patients who are younger than 18 years.
AMMONIUM, 24 HOUR, URINE
15-56 mmol/24 h
Reference values have not been established for patients who are younger than18 years or older than 77 years.
UREA NITROGEN, 24 HOUR, URINE
≥18 years: 7-42 g/24 h
Reference values have not been established for patients who are younger than 18 years.
PROTEIN CATABOLIC RATE, 24 HOUR, URINE
56-125 g/24 h
Interpretation
Delta G (DG), the Gibbs free energy of transfer from a supersaturated to a saturated solution, is negative for undersaturated solutions and positive for supersaturated solutions. In most cases, the supersaturation levels are slightly positive, even in normal individuals, but are balanced by an inhibitor activity.
While the DG of urine is often positive, even in the urine of non-stone formers, on average, the DG is more positive in those individuals who do form kidney stones. The reference values were derived by comparing urinary DG values for the important stone-forming crystalline phases between a population of stone formers and a population of non-stone formers. DG values that are outside the expected range in a population of non-stone formers are marked abnormal.
If the urine citrate is low, secondary causes should be excluded including hypokalemia, renal tubular acidosis, gastrointestinal bicarbonate losses (eg, diarrhea or malabsorption), or an exogenous acid load (eg, excessive consumption of meat protein).
A normal or increased citrate value suggests that potassium citrate may be a less effective choice for treatment of a patient with calcium oxalate or calcium phosphate stones.
An increased urinary oxalate value may prompt a search for genetic abnormalities of oxalate production (ie, primary hyperoxaluria). Secondary hyperoxaluria can result from diverse gastrointestinal disorders that result in malabsorption. Milder hyperoxaluria could result from excess dietary oxalate consumption or reduced calcium (dairy) intake, perhaps even in the absence of gastrointestinal disease.
High urine ammonium and low urinary pH suggest ongoing gastrointestinal losses. Such patients are at risk of uric acid and calcium oxalate stones.
Low urine ammonium and high urine pH suggest renal tubular acidosis. Such patients are at risk of calcium phosphate stones.
Patients with calcium oxalate and calcium phosphate stones are often treated with citrate to raise the urine citrate (a natural inhibitor of calcium oxalate and calcium phosphate crystal growth). However, since citrate is metabolized to bicarbonate (a base), this drug can also increase the urine pH. If the urine pH gets too high with citrate treatment, one may unintentionally increase the risk of calcium phosphate stones. Monitoring the urine ammonium concentration is one way to titrate the citrate dose and avoid this problem. A good starting citrate dose is about one-half of the urine ammonium excretion (in mEq of each). One can monitor the effect of this dose on urine ammonium, citrate, and pH values and adjust the citrate dose based upon the response. A fall in urine ammonium levels should indicate whether the current citrate is enough to partially (but not completely) counteract the daily acid load of that given patient.
The protein catabolic rate is calculated from urine urea. Under routine conditions, the required protein intake is often estimated as 0.8 g/ kg body weight.
The results can be used to determine the likely effect of a therapeutic intervention on stone-forming risk. For example, taking oral potassium citrate will raise the urinary citrate excretion, which should reduce calcium phosphate supersaturation (by reducing free ionic calcium), but citrate administration also increases urinary pH (because it represents an alkali load), which promotes calcium phosphate crystallization. The net result of this or any therapeutic manipulation could be assessed by collecting a 24-hour urine and comparing the supersaturation calculation for calcium phosphate before and after therapy.
Important stone-specific factors:
-Calcium oxalate stones: urine volume, calcium, oxalate, citrate, and uric acid excretion are all risk factors that are possible targets for therapeutic intervention.
-Calcium phosphate stones (apatite or brushite): urinary volume, calcium, pH, and citrate significantly influence the supersaturation of calcium phosphate. Of note, a urine pH below 6 may help reduce the tendency for these stones to form.
-Uric acid stones: urine pH, volume, and uric acid excretion levels influence the supersaturation. Urine pH is especially critical, in that uric acid is unlikely to crystallize if the pH is above 6.
-Sodium urate stones: alkaline pH and high uric acid excretion promote stone formation.
A low urine volume is a universal risk factor for all types of kidney stones.
Cautions
Urine is often supersaturated with respect to the common crystalline constituents of stones, even in non-stone formers.
Individual interpretation of the supersaturation values in light of the clinical situation is critical. In particular, treatment may reduce the supersaturation with respect to one crystal type but increase the supersaturation with respect to another. Therefore, the specific goals of treatment must be considered when interpreting the test results.
Clinical Reference
1. Werness PG, Brown CM, Smith LH, Finlayson B. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J Urol. 1985;134(6):1242-1244
2. Parks JH, Coward M, Coe FL. Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int. 1997;51(3):894-900
3. Finlayson B. Calcium stones: Some physical and clinical aspects. In: David DS, ed. Calcium Metabolism in Renal Failure and Nephrolithiasis. John Wiley and Sons; 1977:337-382
4. Burtis CA, Bruns DE. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics. 7th ed. Saunders, 2014
5. Tiselius HG, Daudon M, Thomas K, Seitz C. Metabolic work-up of patients with urolithiasis: indications and diagnostic algorithm. Eur Urol Focus. 2017;3(1):62-71. doi: 10.1016/j.euf.2017.03.014
Method Description
The major analytes evaluated are potassium, calcium, phosphorus, oxalate, uric acid, citrate, magnesium, sodium, chloride, sulfate, ammonium, urea nitrogen and pH. The protein catabolic rate is calculated from urine urea nitrogen using the formula: Protein catabolic rate (g/day) = [(UUN+4)* 6.25] g
Given the measured urine concentrations of these analytes and the known affinity constants of the ions for each other at the given pH, a computer program (EQUIL2) calculates a supersaturation for each ion pair of interest (eg, calcium oxalate). Results are expressed as a Delta G (DG) value for each ion pair. DG is the Gibbs free energy of transfer from a supersaturated to a saturated solution.(Werness PG, Brown CM, Smith LH, Finlayson B. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J Urol. 1985;134(6):1242-1244; Moreira DM, Friedlander JI, Hartman C, Elsamra SE, Smith AD, Okeke Z. Using 24-hour urinalysis to predict stone type. J Urol. 2013;190(6):2106-2111)
Day(s) Performed
Monday through Sunday
Report Available
2 to 5 daysTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
82340-Calcium
82436-Chloride
82507-Citrate excretion
82570-Creatinine
83735-Magnesium
83935-Osmolality
83945-Oxalate
83986-pH
84105-Phosphorus
84133-Potassium
84300-Sodium
84392-Sulfate
84560-Uric acid
82140-Ammonium
84540-Urea Nitrogen